A Novel Zero-Thermal-Quenching Red Phosphor with High Quantum Efficiency and Color Purity

Author:

Zhao Tianyang1,Zhang Shiqi1,Zhu Dachuan1ORCID

Affiliation:

1. College of Material Science and Engineering, Sichuan University, Chengdu 610065, China

Abstract

In this paper, a series of K5La1-x(MoO4)4: xSm3+ and K5La0.86(MoO4)4: 0.07Sm3+, 0.07Ln3+ (Ln = Sc, Y or Gd) red phosphors were prepared by calcining the mixed raw powders at 600 °C. Meanwhile, the composition and fluorescence properties of the phosphors, especially for the thermal stability, were analyzed in detail. The results indicate that the K5La1-x(MoO4)4: xSm3+ phosphors can be effectively excited at 401 nm and emit red light with three main peaks at 561 nm, 600 nm and 646 nm, attributed to the 4G5/2→6Hj/2 (j = 5, 7 and 9) energy transitions of the Sm3+ ion respectively, among which the K5La0.93(MoO4)4: 0.07Sm3+ exhibits the highest intensity. The quenching mechanism is ascribed to the dipole-dipole interaction. Ln3+ co-doping does not change the shape and peaking position of the excitation and emission spectra of K5La0.93(MoO4)4: 0.07Sm3+, but further increases the emission intensity in different degrees. Particularly, K5La0.86(MoO4)4: 0.07Sm3+, 0.07Gd3+ demonstrates a high quantum efficiency of 74.63%, a low color temperature (1753 K), and a high color purity of up to 99.97%. It is worth noting that all the phosphors have a good thermal stability, even a zero quenching phenomenon occurs, attributed to the electron traps confirmed by the TL spectrum.

Publisher

MDPI AG

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3