Synthesis and Structure of ZnO-Decorated Graphitic Carbon Nitride (g-C3N4) with Improved Photocatalytic Activity under Visible Light

Author:

Chebanenko Maria I.ORCID,Tikhanova Sofia M.ORCID,Nevedomskiy Vladimir N.ORCID,Popkov Vadim I.ORCID

Abstract

The volume of dye production in the chemical industry is growing rapidly every year. Given the global importance of clean water resources, new wastewater treatment solutions are required. Utilizing photocatalysis by harvesting solar energy represents a facile and promising solution for removing dangerous pollutants. This study reports the possibility of increasing the photocatalytic activity of g-C3N4 by creating nanocomposites with ZnO. Exfoliated g-C3N4/ZnO nanocomposites were synthesized by heat treatment of urea and subsequent ultrasonic exfoliation of the colloidal solution by introducing zinc acetate. The uniformity of the distribution of ZnO nanoparticles is confirmed by the method of elemental mapping. The obtained X-ray diffractograms of the obtained nanocomposites show typical X-ray reflections for g-C3N4 and ZnO. It was found that the introduction of oxide into g-C3N4 leads to an increase in the specific surface area values due to the developed ZnO surface. The maximum value of the specific surface area was obtained for a sample containing 7.5% ZnO and was 75.2 m2/g. The g-C3N4/7.5% ZnO sample also demonstrated increased photocatalytic activity during the decomposition of methylene blue under the influence of visible light, which led to a twofold increase in the reaction rate compared to initial g-C3N4.

Publisher

MDPI AG

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3