Peppermint-Mediated Green Synthesis of Nano ZrO2 and Its Adsorptive Removal of Cobalt from Water

Author:

Hasan Ibrahem Mohamed Abouzeid,Salah El-Din Hanan,AbdElRaady Ahmed A.

Abstract

Zirconium oxide nanoparticles (ZrO2NPs) were green synthesized for the first time using an aqueous peppermint extract as a precipitating and capping agent. Addition of the extract to Zr4+ solution was followed by calcination of the resulting precipitate at 570 and 700 °C to form ZrO2NPs570 and ZrO2NPs700, respectively. These oxides were characterized using X-ray diffraction, transmission electron microscopy, and BET surface area analysis, and used as adsorbents for cobalt ions (Co2+) in water. The effects of pH, initial Co2+ concentration, ZrO2NPs mass, and contact time on adsorption efficiency were studied. Characterization results showed formation of cubic ZrO2 with average crystallite sizes (XRD data) of 6.27 and 7.26 nm for ZrO2NPs570 and ZrO2NPs700, respectively. TEM images of the two oxides exhibited nearly spherical nanoparticles and BET surface area measurements indicated the formation of mesoporous oxides having surface areas of 94.8 and 62.4 m2/g, respectively. The results of the adsorption study confirmed that the synthesized ZrO2NPs can be efficiently used for the adsorption of Co2+ from water. The uptake of Co2+ from the treated solution is favored at pH values higher than its point of zero charge (6.0). In addition, the adsorption of Co2+ by ZrO2 follows a pseudo-second order kinetics (R2 = 1.0) and can be explained by the Langmuir adsorption isotherm (R2 = 0.973).

Publisher

MDPI AG

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3