Abstract
Ten mononuclear rare earth complexes of formula [La(btfa)3(H2O)2] (1), [La(btfa)3(4,4′-Mt2bipy)] (2), [La(btfa)3(4,4′-Me2bipy)2] (3), [La(btfa)3(5,5′-Me2bipy)2] (4), [La(btfa)3(terpy)] (5), [La(btfa)3(phen)(EtOH)] (6), [La(btfa)3(4,4′-Me2bipy)(EtOH)] (7), [La(btfa)3(2-benzpy)(MeOH)] (8), [Tb(btfa)3(4,4′-Me2bipy)] (9) and (Hpy)[Eu(btfa)4] (10), where btfa = 4,4,4-trifuoro-1-phenylbutane-1,3-dionato anion, 4,4′-Mt2bipy = 4,4′-dimethoxy-2,2′-bipyridine, 4,4′-Me2bipy = 4,4′-dimethyl-2,2′-bipyridine, 5,5′-Me2bipy = 5,5′-dimethyl-2,2′-bipyridine, terpy = 2,2′:6′,2′-terpyridine, phen = 1,10-phenathroline, 2-benzpy = 2-(2-pyridyl)benzimidazole, Hpy = pyridiniumH+ cation) have been synthesized and structurally characterized. The complexes display coordination numbers (CN) eight for 1, 2, 9, 10, nine for 5, 6, 7, 8 and ten for 3 and 4. The solid-state luminescence spectra of Tb-9 and Eu-10 complexes showed the same characteristic bands predicted from the Tb(III) and Eu(III) ions. The Overall Quantum Yield measured (ϕTOT) at the excitation wavelength of 371 nm for both compounds yielded 1.04% for 9 and up to 34.56% for 10.
Reference64 articles.
1. Lanthanide Photonics: Shaping the Nanoworld
2. Rare Earth Elements, in Ullmann’s Encyclopedia of Industrial Chemistry;Bünzli,2018
3. Lanthanides, Kirk-Othmer Encyclopedia of Chemical Technology;Bünzli,2013
4. Lanthanide and Actinide Chemistry;Cotton,2006
5. A Selective, Protein-Based Fluorescent Sensor with Picomolar Affinity for Rare Earth Elements