Morphology Tuned Pressure Induced Amorphization in VO2(B) Nanobelts

Author:

Cheng Benyuan,Zhang Huafang,Li QuanjunORCID,Liu Jing,Liu Bingbing

Abstract

Pressure-induced amorphization (PIA) has drawn great attention since it was first observed in ice. This process depends closely on the crystal structure, the size, the morphology and the correlated pressurization environments, among which the morphology-tuned PIA remains an open question on the widely concerned mesoscale. In this work, we report the synthesis and high-pressure research of VO2(B) nanobelts. XRD and TEM were performed to investigate the amorphization process. The amorphization pressure in VO2(B) nanobelts(~30 GPa) is much higher than that in previous reported 2D VO2(B) nanosheets(~21 GPa), the mechanism is the disruption of connectivity at particular relatively weaker bonds in the (010) plane. These results suggest a morphology-tuned pressure-induced amorphization, which could promote the fundamental understanding of PIA.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3