Nitrogen-Doped Carbon Matrix to Optimize Cycling Stability of Lithium Ion Battery Anode from SiOx Materials

Author:

Bie Xuan1,Dong Yawei1,Xiong Man12,Wang Ben1,Chen Zhongxue1ORCID,Zhang Qunchao2,Liu Yi1,Huang Ronghua1

Affiliation:

1. School of Power & Mechanical Engineering, Wuhan University, Wuhan 430072, China

2. School of Materials Science and Engineering, Hubei University, Wuhan 430060, China

Abstract

This study prepared silicon oxide anode materials with nitrogen-doped carbon matrices (SiOx/C–N) through silicon-containing polyester thermal carbonization. Melamine was introduced as a nitrogen source during the experiment. This nitrogen doping process resulted in a porous structure in the carbon matrices, a fact confirmed by scanning electron microscopy (SEM). Pyridinic and quaternary nitrogen, but mainly tertiary nitrogen, were generated, as shown via X-ray photoelectron spectroscopy (XPS). Electrochemical tests confirmed that, as anode materials for a lithium-ion battery, SiOx/C–N provided better cycle stability, improved rate capability, and lower Li+ diffusion resistance. The best performance showed an activated capacity at 493.5 mAh/g, preserved at 432.8 mAh/g after the 100th cycle, with 87.7% total Columbic efficiency. Those without nitrogen doping gave 1126.7 mAh/g, 249.0 mAh/g, and 22.1%, respectively. The most noteworthy point was that, after 100 cycles, anodes without nitrogen doping were pulverized into fine powders (SEM); meanwhile, in the case of anodes with nitrogen doping, powders of a larger size (0.5–1.0 µm) formed, with the accumulation of surrounding cavities. We suggest that the formation of more prominent powders may have resulted from the more substantial nitrogen-doped carbon matrices, which prevented the anode from further breaking down to a smaller size. The volume expansion stress decreased when the powders decreased to nanosize, which is why the nanosized silicon anode materials showed better cycling stability. When the anodes were cracked into powders with a determined diameter, the stress from volume expansion decreased to a level at which the powders could preserve their shape, and the breakage of the powders was stopped. Hence, the diameters of the final reserved powders are contingent on the strength of the matrix. As reported, nitrogen-doped carbon matrices are more robust than those not doped with nitrogen. Thus, in our research, anodes with nitrogen-doped carbon matrices presented more large-diameter powders, as SEM confirmed. Anodes with nitrogen doping will not be further broken at a larger diameter. At this point, the SEI film will not show continuous breakage and formation compared to the anode without doping. This was validated by the lower deposition content of the SEI-film-related elements (phosphorous and fluorine) in the cycled anodes with nitrogen doping. The anode without nitrogen doping presented higher content, meaning that the SEI films were broken many times during lithiation/delithiation (EDS mapping).

Funder

National Natural Science Foundation of China

Hubei Natural Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3