Metal Hydride Compressors with Gas-Gap Heat Switches: Concept, Development, Testing, and Space Flight Operation for the Planck Sorption Cryocoolers

Author:

Bowman Robert C.ORCID

Abstract

Two closed-cycle cryogenic refrigerators were used to generate temperatures of ~18 K via evaporation of liquid hydrogen at the interfaces with radiofrequency and infrared sensors on an Earth-orbiting spacecraft that measured the anisotropy of the cosmic microwave background (CMB) during the European Space Agency (ESA) Planck Mission from June 2009 until October 2013. The liquid hydrogen phase was continuously generated in each Planck Sorption Cryocooler (PSC) by coupling a Joule–Thomson (J–T) expander to hydrogen gas initially pressurized to nominally 3000 kPa (i.e., ~30 bar) and subsequently discharged at pressure of 30 kPa (i.e., ~0.3 bar) by desorption and absorption using LaNi4.78Sn0.22Hx contained in six individual sorbent beds. The pressures were varied by alternately heating and cooling this hydride that included temperature modulation with an integrated Gas-Gap Heat Switch (GGHS). The novel GGHS used the low-pressure hydride ZrNiHx to vary thermal conductance between the bed containing the LaNi4.78Sn0.22Hx sorbent and the rest of the compressor system. The design features and development of these hydride components are described along with details of fabrication and assembly. The results obtained during extended laboratory testing are also summarized. The predictions from this preflight testing are compared to the performance observed while operating in orbit during the Planck Mission. This review ends with a summary of lessons learned and recommendations for improved systems.

Publisher

MDPI AG

Subject

Inorganic Chemistry

Reference42 articles.

1. Aerospace Coolers: A 50-Year Quest for Long-life Cryogenic Cooling in Space;Ross,2007

2. Space Cryocooler Developments

3. Closed-Cycle Joule-Thomson Cryocoolers;Bowman,2003

4. Development of metal hydride beds for sorption cryocoolers in space applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3