A Simple Method to Obtain Protective Film against Acid Rain

Author:

Mocioiu Ana-Maria,Băilă Diana-Irinel,Codrea Cosmin IulianORCID,Mocioiu Oana CătălinaORCID

Abstract

Acid rain is a major problem for animals, plants, buildings, and also for the top glass of photovoltaic (PV) solar panels and greenhouses. Air pollutants such as NOx, NH3, and H2S can mix with water in the atmosphere to form acid rain. It was discovered that atmospheric water vapor adsorbed on the surface of glass can also lead to corrosion of the glass surface. The purpose of this work is to obtain a protective film for glasses used in different domains such as solar cells, windows, stained glass windows from historical buildings, etc. Thin film deposited on glass must be protective against acid rain, transparent in the visible domain with a band gap up to 3.2 eV, and have a vitreous structure (glass). Electron beam (e-gun) technology is a deposition technique for producing high-purity and dense coatings in a short time. It is well known that Ta2O5 is an oxide with anticorrosive properties, but it is expensive and cannot form glass by itself. ZnO is an oxide known as a glass former, exhibiting good optical properties. In this paper, a thin film obtained by the deposition of ZnO and Ta2O5 on a glass substrate using e-gun technology are studied. The simulated acid rain effect on the structure, morphology, and optical properties of thin films are studied after a 65% nitric acid attack on the surface. The X-ray diffraction (XRD) pattern shows the vitreous state of the thin film with a composition 50%ZnO 50%Ta2O5 before and after the acid attack. The morphology, composition, and thickness of the film are investigated using scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) and profilometry.

Publisher

MDPI AG

Subject

Inorganic Chemistry

Reference33 articles.

1. Acid Rain is a Local Environment Pollution but Global Concern;Mohajan;J. Anal. Chem.,2018

2. A Case Study on Acid Rain over Jeju Island, Korea;Kim;J. Clim. Res.,2007

3. Estimates of Economic Loss of Materials Caused by Acid Deposition in China

4. Acid rain in Europe and the United States: an update

5. The Impact of Acid Rain on Historical Buildings in Kuala Lumpur, Malaysia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3