Infrared Light Annealing Effect on Pressure Sensor Fabrication Using Graphene/Polyvinylidene Fluoride Nanocomposite

Author:

Samoei Victor K.1ORCID,Takeda Katsuhiko2,Sano Keiichiro2,Bharadwaz Angshuman3,Jayasuriya Ambalangodage C.34,Jayatissa Ahalapitiya H.1

Affiliation:

1. Nanotechnology and MEMS Laboratory, Department of Mechanical, Industrial, and Manufacturing Engineering (MIME), The University of Toledo, Toledo, OH 43606, USA

2. Kanto Gakuin University, 1-50-1, Mutsuura-Higashi, Kanazawa, Yokohama 236-8503, Japan

3. Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH 43606, USA

4. Department of Orthopaedic Surgery, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA

Abstract

This paper reports the designing and testing, as well as the processing and testing, of a flexible piezoresistive sensor for pressure-sensing applications, utilizing a composite film of graphene/polyvinylidene fluoride (Gr/PVDF). Graphene serves as the conductive matrix, while PVDF acts as both the binder and a flexible polymer matrix. The composite film was fabricated using the solution casting technique on a flexible polyethylene substrate. We investigated the impact of post-infrared annealing on the pressure response of the Gr/PVDF films. The experimental results indicated that the films IR-annealed for 2 min exhibited improved pressure sensitivity compared with the as-deposited films. The stability and durability of the sensors were assessed through the application of pressure over more than 1000 cycles. The mechanical properties of the films were examined using a universal tensile testing machine (UTM) for scenarios both with and without infrared light annealing. Raman spectroscopy was employed to analyze the quality and characteristics of the prepared nanocomposites. This study enhances our understanding of the interplay between the Gr/PVDF composite, the IR annealing effect, and the hysteresis effect in the pressure-sensing mechanism, thereby improving the piezoresistance of the Gr/PVDF nanocomposite through the infrared annealing process.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3