Calcium-Based Sorbent Carbonation at Low Temperature via Reactive Milling under CO2

Author:

Taghavi Kouzehkanan Seyed Morteza1ORCID,Hassani Ehsan2ORCID,Feyzbar-Khalkhali-Nejad Farshad1ORCID,Oh Tae-Sik1ORCID

Affiliation:

1. Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA

2. Manufacturing Excellence Division, International Paper, Prattville, AL 36067, USA

Abstract

The carbonation behavior of calcium-containing sorbents, CaO and Ca(OH)2, was investigated under pressurized CO2 at nominal room temperature. The carbonation reaction was mechanically driven via reactive ball milling. The carbonation rate was determined by monitoring the CO2 pressure inside the sealed milling jar. Two different versions of CaO were fabricated as starting materials. The addition of citric acid in CaO synthesis resulted in a significant increase in sorbent surface area, bringing up the conversion of CO2 from 18% to 41% after 3 h of reactive milling. The hydroxide formation from these two oxides closed the surface area gap. Nevertheless, we found that hydroxides had a higher initial carbonation rate and greater final CO2 uptake than their oxide counterparts. However, the formation of byproduct water limited the further carbonation of Ca(OH)2. When we added a controlled amount of water to the CaO-containing milling jar, the highest carbonation rate and most extensive CO2 uptake were attained due to the in situ formation of reactive Ca(OH)2 nanoparticles. We saw CaCO3 X-ray diffraction peaks only when Ca(OH)2 was involved in this low-temperature carbonation, indicating that the grain growth of CaCO3 is easier on the Ca(OH)2 surface than on the CaO surface. We used the Friedman isoconversional method to calculate the effective activation energy of decarbonation for the high surface area CaO sorbent milled with water. The average effective activation energy was found to be about 72 kJ mol−1, and its magnitude started to decrease significantly from 50% sorbent regeneration. The drastic change of the effective activation energy during decarbonation suggests that CaCO3, formed at nominal room temperature by reactive milling under pressurized CO2, should undergo a more drastic morphology change than the typical thermally carbonated CaCO3.

Publisher

MDPI AG

Subject

Inorganic Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3