Preparation and Application of Fe-Al-SiO2 Poly-Coagulants for Removing Microcystis aeruginosa from Water

Author:

Zhang Yuhan1,Nie Xiaobao12,Sun Shiquan13,Zhang Wei1,Fang Xin1,Wan Junli12

Affiliation:

1. School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, China

2. Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China

3. Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha 410114, China

Abstract

Novel Fe-Al-SiO2 (FAS) poly-coagulants were prepared by the ball milling method using ferrous sulfate, aluminum sulfate, hydrophobic silica, and sodium carbonate as raw materials. The optimal preparation conditions and effects of preparation parameters on removal efficiencies were obtained by Response Surface Methodology (RSM) and Analysis of Variance (ANOVA). Removal efficiencies were investigated by employing FAS as the poly-coagulant for algae-laden water. Furthermore, obtained FAS samples were characterized by SEM, FTIR, XRD, and TGA. Results showed that the optimal preparation conditions were n(Fe):n(Al) of 2:1, m(Si):m(Fe+Al) of 1:2, and n(CO32−):n(Fe+Al) of 1.75:1, and the most significant influencing factor was n(CO32−):n(Fe+Al). FAS13 prepared under the above condition had the highest coagulation efficiency for simulated algae-laden water. Removal efficiencies for OD680, TP, and residual Al and Fe concentrations were 92.86%, 90.55%, 0.142 mg/L, and 0.074 mg/L, respectively. Nano-sized spherical particles, excellent thermal stability, and functional groups such as Al–O–Si, Fe–O–Si, and Fe–OH, corresponding to Al2Si2O5(OH)4, Fe7Si8O22(OH)2, and Fe2(OH)2CO3, were observed in FAS13. The coagulation performance of FAS13 was splendid when applied in real algae-laden water. The removal rates of TP, OD680, turbidity, and Chl-α were above 93.87%. The residual Al concentration was at the range of 0.057–0.128 mg/L.

Funder

National Key R&D Program of China

Natural Science Foundation of Hunan Province

Special Fund for Building Chenzhou National Sustainable Development Agenda Innovation Demonstration Zone of Hunan Province

Publisher

MDPI AG

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3