Study of Cyclohexane and Methylcyclohexane Functionalization Promoted by Manganese(III) Compounds

Author:

Neves Eduardo S.1,Fernandes Christiane1,Horn Adolfo1

Affiliation:

1. Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil

Abstract

Alkane functionalization using safe and low-energy processes is of great interest to industry and academia. Aiming to contribute to the process of saturated hydrocarbon functionalization, we have studied a set of three manganese(III) complexes as catalysts for promoting the oxidation of saturated hydrocarbons (cyclohexane and methylcyclohexane) in the presence of hydrogen peroxide or trichloroisocyanuric acid (TCCA). The mononuclear manganese(III) compounds were prepared using the ligands H2LMet4 (6,6’-((1,4-diazepane-1,4-diyl)bis(methylene))bis(2,4-dimethylphenol), H2salen (2,2’-((1E,1’E)-(ethane-1,2-diylbis(azaneylylidene))bis(methaneylylidene))diphenol) and H2salan (2,2’-((ethane-1,2-diylbis(azanediyl))bis(methylene))diphenol). The catalytic processes were carried out in acetonitrile at 25 and 50 °C for 24 h. The increase in the temperature was important to get a better conversion. The compounds did not promote cyclohexane oxidation in the presence of H2O2. However, they were active in the presence of TCCA, employing a ratio of 1000:333:1 equivalents of the substrate:TCCA:catalyst. The best catalytic activity was shown by the compound [Mn(salen)Cl], reaching conversions of 14.5 ± 0.3% (25 °C) and 26.3 ± 1.1% (50 °C) (yield for chlorocyclohexane) and up to 12.1 ± 0.5% (25 °C) and 29.8 ± 2.2% (50 °C) (total yield for the mixture of the products 1-chloro-4-methylcyclohexane, 3-methylcyclohexene and 1-methylcyclohexene). The interaction of the catalysts with TCCA was studied using electron paramagnetic resonance (EPR), suggesting that the catalysts [Mn(LMet4)Cl] and [Mn(salan)Cl] act via a different mechanism from that observed for [Mn(salen)Cl].

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) through the projects

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brazil

Publisher

MDPI AG

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3