Spectroscopic, Anti-Cancer Activity, and DFT Computational Studies of Pt(II) Complexes with 1-Benzyl-3-phenylthiourea and Phosphine/Diamine Ligands

Author:

Mohamed Dina Saadi1,Al-Jibori Subhi A.2,Behjatmanesh-Ardakani Reza3,Faihan Ahmed S.2ORCID,Yousef Tarek A.45,Alhamzani Abdulrahman G.4ORCID,Abou-Krisha Mortaga M.46ORCID,Al-Janabi Ahmed S. M.2ORCID,Hsiao Benjamin S.7ORCID

Affiliation:

1. Department of Chemistry, College of Education for Women, University of Tikrit, Tikrit 34001, Iraq

2. Department of Chemistry, College of Science, University of Tikrit, Tikrit 34001, Iraq

3. Department of Chemistry, Payame Noor University, Tehran 19395-4697, Iran

4. Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia

5. Department of Toxic and Narcotic Drug, Forensic Medicine, Mansoura Laboratory, Medicolegal Organization, Ministry of Justice, Mansoura 11001, Egypt

6. Department of Chemistry, South Valley University, Qena 83523, Egypt

7. Department of Chemistry, Stony Brook University, Stony Brook, New York, NY 11794-3400, USA

Abstract

The reaction between [PtCl2(L-L)] (L-L = dppe, dppp, dppb, dppf, Phen and Bipy) or [PtCl2(PPh3)2] with 1-benzyl-3-phenylthiourea (H2BPT) in a basic medium (CHCl3/EtOH) created new coordinated square planner Pt(II) complexes with [Pt(BPT)(L-L)] (1–4,6,7) and [Pt(BPT)(PPh3)2] (5) types. These complexes were fully characterized by analytical and spectroscopic techniques (i.e., IR, UV. Vis., 1H, and 31P NMR). The results indicated that the thiourea derivative ligand act as a dianion ligand bonded through both S and N atoms in a chelating mode or as a mono-anion ligand coordinated through a sulfur atom with Pt(II) ion. Cytotoxicity activity was performed by the MTT assay to determine anti-cancer activities against MCF-7 breast cancer cells. The study indicated that IC50 values for MCF-7 cells were 10.96–78.90 µM. Additionally, the complexes [Pt(BPT)(dppe)] (1), [Pt(BPT)(PPh3)2] (5), and [Pt(BPT)2(Bipy)] (7) were investigated theoretically, where their quantum parameters were evaluated using the Gaussian 09 program using the theory of B3LYP/Def2TZVP//B3LYP/Lanl2dz. The calculation results confirmed the optimized structures of the complexes square planar geometry. However, the calculated bond lengths and angles showed a slightly distorted square planar geometry due to the trans influence of the sulfur atom. Additionally, complexes of [Pt(BPT)(dppe)] (1) and [Pt(BPT)(PPh3)2] (5) showed higher stability compared to [Pt(BPT)2(Bipy)] (7), which can be attributed to the higher back-donation of (1) and (5) complexes. Furthermore, among the three complexes, the [Pt(BPT)2(Bipy)] (7) complex possessed the lowest HOMO–LUMO gap, which may be a good candidate as the photo-catalyst material.

Funder

Imam Mohammad Ibn Saud Islamic University

Publisher

MDPI AG

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3