Botanically Templated Monolithic Macrostructured Zinc Oxide Materials for Photocatalysis

Author:

Black Nathan,Ciota David,Gillan Edward

Abstract

With an increased focus on light energy to facilitate catalytic processes, photocatalysts have been intensively studied for a wide range of energy and environmental applications. In this report, we describe the use of chemically dehydrated leaves as sacrificial foam-like templates for the growth of monolithic macrostructured semiconducting zinc oxide and nickel or cobalt doped zinc oxide materials. The composition and structure of these templated zinc oxides were characterized using X-ray powder diffraction, scanning electron microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. Optical properties were examined using solid-state UV–vis diffuse reflectance spectroscopy. The metal-doped ZnO materials have enhanced visible absorption and lower band gaps as compared to ZnO. The botanically templated ZnO materials retain the macroscopic cellular form of the leaf template with fused nanoparticle walls. Their UV photocatalytic oxidative abilities were investigated using methylene blue dye degradation in air. The leaf templated zinc oxides degrade ~85% of methylene blue dye with 30 min of UV illumination. Nickel and cobalt doped zinc oxides showed varying degrees of decreased UV and visible light photocatalytic activity, possibly due to metal-mediated charge recombination. The mild chemical dehydration process here allows complex soft botanical structures to be easily utilized for templating materials.

Funder

National Science Foundation

American Chemical Society Petroleum Research Fund

Publisher

MDPI AG

Subject

Inorganic Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3