High-Capacity Ion Batteries Based on Ti2C MXene and Borophene First Principles Calculations

Author:

Kolosov Dmitry A.1ORCID,Glukhova Olga E.1ORCID

Affiliation:

1. Institute of Physics, Saratov State University, 410012 Saratov, Russia

Abstract

In this paper, we report an ab initio study of a composite material based on Ti2C and borophene B12 as an anode material for magnesium-ion batteries. The adsorption energy of Mg, specific capacitance, electrical conductivity, diffusion barriers, and open-circuit voltage for composite materials are calculated as functions of Mg concentration. It is found that the use of Ti2C as a substrate for borophene B12 is energetically favorable; the binding energy of Ti2C with borophene is −1.87 eV/atom. The translation vectors of Ti2C and borophene B12 differ by no more than 4% for in the X direction, and no more than 0.5% in the Y direction. The adsorption energy of Mg significantly exceeds the cohesive energy for bulk Mg. The energy barrier for the diffusion of Mg on the surface of borophene B12 is ~262 meV. When the composite surface is completely covered with Mg ions, the specific capacity is 662.6 mAh g−1 at an average open-circuit voltage of 0.55 V (relative to Mg/Mg+). The effect of reducing the resistance of borophene B12 upon its binding to Ti2C is established. The resulting electrical conductivity of the composite Ti16C8B40 is 3.7 × 105 S/m, which is three times higher than the electrical conductivity of graphite. Thus, a composite material based on Ti2C and borophene B12 is a promising anode material for magnesium-ion batteries.

Funder

Ministry of Science and the Russian Federation

Publisher

MDPI AG

Subject

Inorganic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3