Temperature and Ambient Band Structure Changes in SnO2 for the Optimization of Hydrogen Response

Author:

Filippatos Petros-Panagis12,Soultati Anastasia1,Kelaidis Nikolaos1,Davazoglou Dimitris1,Vasilopoulou Maria1ORCID,Drivas Charalampos3,Kennou Stella3,Chroneos Alexander45ORCID

Affiliation:

1. Institute of Nanoscience and Nanotechnology (INN), National Center for Scientific Research Demokritos, Agia Paraskevi, 15310 Athens, Greece

2. Faculty of Engineering, Environment and Computing, Coventry University, Priory Street, Coventry CV1 5FB, UK

3. Department of Chemical Engineering, University of Patras, 26504 Patras, Greece

4. Department of Electrical and Computer Engineering, University of Thessaly, 38221 Volos, Greece

5. Department of Materials, Imperial College, London SW7 2AZ, UK

Abstract

Tin dioxide (SnO2) is one of the most used materials for sensing applications operating at high temperatures. Commonly, “undoped SnO2” is made by precursors containing elements that can have a deleterious impact on the operation of SnO2 sensors. Here, we employ experimental and theoretical methods to investigate the structural properties and electronic structure of the rutile bulk and surface SnO2, focusing on unintentional doping due to precursors. Unintentional doping from precursors as well as intrinsic doping can play an important role not only on the performance of gas sensors, but also on the properties of SnO2 as a whole. The theoretical calculations were performed using density functional theory (DFT) with hybrid functionals. With DFT we examine the changes in the electronic properties of SnO2 due to intrinsic and unintentional defects and we then discuss how these changes affect the response of a SnO2-based gas sensor. From an experimental point of view, we synthesized low-cost SnO2 thin films via sol–gel and spin-coating processes. To further enhance the performance of SnO2, we coated the surface with a small amount of platinum (Pt). The crystalline structure of the films was analyzed using x-ray diffraction (XRD) and scanning electron microscopy (SEM), while for the determination of the elements contained in the sample, X-ray photoelectron spectroscopy (XPS) measurements were performed. Furthermore, we investigated the effect of temperature on the band structure of SnO2 in air, in a vacuum and in nitrogen and hydrogen chemical environments. To optimize the response, we used current–voltage characterization in varying environments. The aim is to associate the response of SnO2 to various environments with the changes in the band structure of the material in order to gain a better understanding of the response mechanism of metal oxides in different pressure and temperature environments. We found that the resistance of the semiconductor decreases with temperature, while it increases with increasing pressure. Furthermore, the activation energy is highly affected by the environment to which the thin film is exposed, which means that the thin film could respond with lower energy when exposed to an environment different from the air.

Publisher

MDPI AG

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3