Hybrids Composed of an Fe-Containing Wells–Dawson Polyoxometalate and Carbon Nanomaterials as Promising Electrocatalysts for the Oxygen Reduction Reaction

Author:

Novais Hugo C.1,Jarrais Bruno1,Mbomekallé Israël-Martyr2,Teillout Anne-Lucie2,Oliveira Pedro de2ORCID,Freire Cristina1ORCID,Fernandes Diana M.1ORCID

Affiliation:

1. LAQV-REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal

2. Equipe d’Electrochimie et de Photo-Électrochimie, Institut de Chimie Physique, UMR 8000 CNRS, Faculté des Sciences d’Orsay, Université Paris-Saclay, F-91405 Orsay, France

Abstract

The oxygen reduction reaction (ORR) is a key cathodic reaction in energy-converting systems, such as fuel cells (FCs). Thus, it is of utmost importance to develop cost-effective and efficient electrocatalysts (ECs) without noble metals to substitute the Pt-based ones. This study focuses on polyoxometalate (POM)-based ECs for ORR applications. A Wells–Dawson POM salt K7 [P2W17(FeOH2)O61].·20H2O was immobilised onto graphene flakes and multiwalled carbon nanotubes doped with nitrogen, denominated as P2W17Fe@GF_N8 and P2W17Fe@MWCNT_N8. The successful preparation of the composites was proved with various characterisation techniques, including FTIR, XPS and SEM. Both materials showed good ORR performance in an alkaline medium with similar potential onset values of ~0.84 V vs. RHE and diffusion-limiting current densities of −3.9 and −3.3 mA cm−2 for P2W17Fe@MWCNT_N8 and P2W17Fe@GF_N8, respectively. Furthermore, both composites presented low Tafel slopes (48–58 mV dec−1). Chronoamperometric tests revealed that the as-prepared nanocomposites rendered a significant improvement achieving between 90 and 94% of current retention in tolerance to methanol in comparison with Pt/C, and moderate to good long-term electrochemical stability with current retentions comprised between 68 and 88%. This work reinforces the use of POMs as important electroactive species for the preparation of alternative ORR electrocatalysts, exhibiting good activity, stability and selectivity towards the ORR in the presence of methanol.

Funder

FEEI through Programa operacional Competitividade e Internacionalização-COMPETE2020

FCT—Fundação para a Ciência e a Tecnologia, I.P.

Publisher

MDPI AG

Subject

Inorganic Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3