A Computational Perspective on Carbon-Carbon Bond Formation by Single Cu Atom on Pd(111) Surface for CO Electrochemical Reduction

Author:

Liao Chen-Cheng1ORCID,Tsai Tsung-Han1,Chang Chun-Chih2,Tsai Ming-Kang13ORCID

Affiliation:

1. Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan

2. Department of Chemical and Materials Engineering, Chinese Culture University, Taipei 11114, Taiwan

3. Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan

Abstract

This study focuses on the computational characterization of electrochemical C-C bond formation through the CO and CHO coupling process utilizing a dioxo-coordinated Cu single atom site ([CuO2]*) supported on a Pd(111) surface. The stable intermediate, [CuO2]*(CO)2, was identified as a tetradentate-and-tetrahedral species formed upon exposure to CO gaseous molecules. Electrochemically, the hydrogenation of the carbonyl group to CHO was found to be 0.87 eV, conceivably lower than the corresponding step for conventional Cu surfaces. This study observed a considerable charge transfer effect from the top layer of Pd atoms to the adsorbate moiety, especially at the TS structure. This phenomenon resulted in an accessible C-C bond formation barrier at 0.67 eV. Furthermore, the reaction energy of C-C bond formation was found to be exothermic at −0.21 eV, indicating a favorable chemical equilibrium condition. Considering the temperature effect and pressure of the gaseous molecules (CO, CO2, O2), the [CuO2]*(CO)2 intermediate was substantially populated at room temperature and was found to be chemically resilient under dry ambient conditions, as suggested by the kinetic modeling results.

Funder

National Science and Technology Council of Taiwan

Publisher

MDPI AG

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3