Pyridine-2,6-Dicarboxylic Acid Esters (pydicR2) as O,N,O-Pincer Ligands in CuII Complexes

Author:

Butsch Katharina,Sandleben Aaron,Dokoohaki Maryam Heydari,Zolghadr Amin Reza,Klein AxelORCID

Abstract

The pyridine-2,6-carboxylic esters pydicR2 with R = Me or Ph form the unprecedented mononuclear CuII complexes [Cu(pydicR2)Cl3]− in one-pot reactions starting from pyridine-2,6-carboxychloride pydicCl2, CuII chloride, and NEt3 in MeOH or PhOH solution under non-aqueous conditions. The triethylammonium salts (HNEt3)[Cu(pydicR2)Cl3] were isolated. The methyl derivative could be crystallized to allow a XRD structure determination. Both structures were optimized using DFT calculations in various surroundings ranging from gas phase and the non-coordinating solvent CH2Cl2 to the weakly coordinating acetone and well-coordinating solvents acetonitrile (MeCN) or dimethylformamide (DMF), while detailed calculation showed the charge distribution, dipole moments, and HOMO–LUMO gap energies changing upon solvation. According to these calculations, the ion pairs and the anionic CuII complexes were stable, which shows only Cu–Cl bond elongation and weakening of the charge transfer between the anionic complex and the cation as solvents become polar. Synthesis attempts in the presence of water yielded the CuII complexes [Cu(pydic)(OH2)2]n and [Cu(OH2)6][{Cu(pydic)}2(µ-Cl)2], which results from pydicCl2 hydrolysis. Alternatively, the new pydic(IPh)2 (IPh = 2-iodo-phenyl) ester ligand was synthesized and reacted with anhydrous CuCl2, which yields the new binuclear complex [{Cu(pydic(IPh)2)Cl}2(µ-Cl)2]. EPR spectroscopy of the solid compounds reveals typical axial spectra in line with the observed and DFT calculated geometries. Cyclic voltammetry and UV–vis absorption spectroscopy in solution are in line with un-dissociated complex species [Cu(pydicR2)Cl3]−.

Publisher

MDPI AG

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3