Visible Light Sensitive SnO2/ZnCo2O4 Material for the Photocatalytic Removal of Organic Pollutants in Water

Author:

Benhebal Hadj,Wolfs Cédric,Kadi Samir,Tilkin Rémi G.ORCID,Allouche Boualem,Belabid Radhwane,Collard Valérie,Felten Alexandre,Louette Pierre,Lambert Stéphanie D.ORCID,Mahy Julien G.ORCID

Abstract

In this study, pure ZnCo2O4 and SnO2/ZnCo2O4 mix photocatalysts have been synthesized by the sol-gel process with three different SnO2 loading percentages (10, 20, and 30 wt %). Their photocatalytic activities were assessed on the degradation of organic pollutants in water under visible illumination. The structural, morphological, and optical properties were analyzed by X-ray diffraction (XRD), scanning electron microscopy, energy-dispersive X-ray (EDX), Fourier transform infrared (FTIR), nitrogen adsorption-desorption isotherms, X-ray photoelectron spectroscopy (XPS), and UV–Visible diffuse reflectance measurements. The results have shown that the materials are composed of a crystalline ZnCo2O4 matrix with a decrease in crystallite size with the amount of SnO2. Weakly crystalline SnO2 is also observed for loaded samples. The specific surface area is modified with the loading ratio. The evaluation of the photoactivity of the samples under visible light for the degradation of p-nitrophenol has highlighted that all materials are highly photoactive under visible light thanks to heterojunction between the two oxides. An application test has been conducted on a dye, congo red, showing the same tendencies. An optimal amount of SnO2 loading is observed for the sample containing 20 wt % of SnO2. A comparison with commercial Evonik P25 showed that the materials developed in this work have five to six times better efficiency under visible light, leading to a promising photocatalyst material.

Publisher

MDPI AG

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3