Construction of Zn0.5Cd0.5S/Bi4O5Br2 Heterojunction for Enhanced Photocatalytic Degradation of Tetracycline Hydrochloride

Author:

Luo Lan1,Shen Juan12,Jin Bo2

Affiliation:

1. School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China

2. State Key Laboratory of Environmental-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China

Abstract

The development of efficient catalysts with visible light response for the removal of pollutants in an aqueous environment has been a hotspot in the field of photocatalysis research. A Zn0.5Cd0.5S (ZCS) nanoparticle/Bi4O5Br2 ultra-thin nanosheet heterojunction was constructed by ultrasound-assisted solvothermal method. The morphology, structure, and optoelectronic properties of the composite were characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and UV–vis diffuse reflectance spectra. Under simulated visible light illumination, the photocatalytic performance was evaluated through degradation of tetracycline hydrochloride. Results show that the degradation effect by the optimum ZCS/Bi4O5Br2 catalyst is superior to pure materials with the kinetic constant that is 1.7 and 9.6 times higher than those of Bi4O5Br2 and ZCS, and also has better stability and reusability. Trapping experiments and electron paramagnetic resonance tests find that free radicals in the photocatalytic system are superoxide radicals and holes. This work provides a referable idea for the development of more efficient and recyclable photocatalysts.

Funder

Sichuan Province for Science and Technology Development

Outstanding Youth Science and Technology Talents Program of Sichuan Province

Project of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3