Preparation of Glass-Ceramics in the R2O-Bi2O3-B2O3-SiO2 System Applied in Automobile Glass Enamel

Author:

Zhao Tiangui12,Wang Wei1,Liu Kun1,Liu Li2,Dong Weixia1,Bao Qifu1,Xu Heliang2,Zhou Jianer1

Affiliation:

1. School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China

2. Jiangsu Baifu Technology Co., Ltd., Yixing 214200, China

Abstract

Environmental deterioration has put higher requirements on the acid resistance of automotive glass enamel. The present paper aims to prepare acid-resistant glass-ceramics used in automobile glass enamel. Base glasses with the compositions 15R2O-xBi2O3-10B2O3-(75-x) SiO2 (R2O is a mixture of Li2O, Na2O, and K2O (1:1:1, molar ratio), where x = 10, 15, 20, 25, and 30, respectively) was prepared by the melt-quenching method, and glass-ceramics were prepared by their controlling crystallization heat treatment. Crystallization behavior and crystallization ability of base glasses were investigated using the thermal stability parameter (S), the crystallization kinetics calculation results of base glasses, as well as the phase identification results of the heat-treated samples. The effects of the heat treatment temperature on the micromorphology and acid resistance of the heat-treated glasses were also investigated. Then, the optimized glass ceramic was used to prepare automotive glass enamel. The results indicate that: (I) with the increase of Bi2O3/SiO2 ratio, the characteristic temperature of the base glass decreases, the coefficient of thermal expansion (CTE) and crystallization ability increases significantly, the crystallization temperature range becomes wider; (II) the crystallization activation energy of base glasses are in the range of 169~264 kJ/mol; (III) Bi2SiO5 and Bi2O2SiO3 metastable phases are mainly precipitated when the crystallization temperature is between 530 °C and 650 °C, while only Bi4Si3O12 phase is precipitated when the crystallization temperature is above 650 °C; (IV) crystallinity of base glass increases significantly with increasing heat treatment temperature, which is beneficial to improve the acid resistance of heat treated products; (V) automotive glass enamel was prepared by mixing 15R2O-25Bi2O3-10B2O3-50SiO2 glass-ceramic powder with copper-chrome black and varnish, and then printed on the automobile glass substrate. All the properties of the sintered enamel can meet the market requirements, and the acid resistance of our product is better than that of market products.

Funder

Educational Major Project of Jiangxi Province in China

Major Project of Jingdezhen Ceramic Industry

Jingdezhen Technology Bureau Grant

Jiangxi Province Key R&D Program in China

2021 Open Project “State Key Laboratory of Silicon Materials”

Jingdezhen Technology Bureau

Publisher

MDPI AG

Subject

Inorganic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3