Author:
Wilden Johanna,Hoser Andreas,Chikovani Mamuka,Perßon Jörg,Voigt Jörg,Friese Karen,Grzechnik Andrzej
Abstract
Mn2Sb is ferrimagnetic below its Curie temperature (TC) and passes through a spin flip transition with decreasing temperature. The Co substitution induces an additional first-order phase transition from the ferrimagnetic (FRI) to an antiferromagnetic (AFM) state. This phase transition is connected to a sizable magnetocaloric effect (MCE). To understand the underlying mechanisms, the temperature dependence of structural and magnetic changes was analyzed. At the same time, the influence of the Co substitution was explored. Three Mn2−xCoxSb (x = 0.1, 0.15, 0.2) compounds were synthesized by cold crucible induction melting. Neutron powder diffraction was performed to determine the magnetic structures and to obtain the individual magnetic moments on both symmetrically independent Mn sites. In combination with the temperature-dependent magnetization measurements, the magnetic phase transition temperatures were identified. In the low-temperature range, additional antiferromagnetic peaks were detected, which could be indexed with a propagation vector of (0 0 ½). In Mn1.9Co0.1Sb at 50 K and in Mn1.8Co0.2Sb at 200 K, a co-existence of the FRI and the AFM state was observed. The pure AFM state only occurs in Mn1.8Co0.2Sb at 50 K.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献