QSPR and Nano-QSPR: Which One Is Common? The Case of Fullerenes Solubility

Author:

Toropova Alla P.1ORCID,Toropov Andrey A.1ORCID,Fjodorova Natalja2ORCID

Affiliation:

1. Laboratory of Environmental Chemistry and Toxicology, Istituto Di Ricerche Farmacologiche Mario Negri, IRCCS, Via Mario Negri, 2, 20156 Milano, Italy

2. Laboratory for Chemoinformatics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia

Abstract

Background: The system of self-consistent models is an attempt to develop a tool to assess the predictive potential of various approaches by considering a group of random distributions of available data into training and validation sets. Considering many different splits is more informative than considering a single model. Methods: Models studied here build up for solubility of fullerenes C60 and C70 in different organic solvents using so-called quasi-SMILES, which contain traditional simplified molecular input-line entry systems (SMILES) incorporated with codes that reflect the presence of C60 and C70. In addition, the fragments of local symmetry (FLS) in quasi-SMILES are applied to improve the solubility’s predictive potential (expressed via mole fraction at 298’K) models. Results: Several versions of the Monte Carlo procedure are studied. The use of the fragments of local symmetry along with a special vector of the ideality of correlation improves the predictive potential of the models. The average value of the determination coefficient on the validation sets is equal to 0.9255 ± 0.0163. Conclusions: The comparison of different manners of the Monte Carlo optimization of the correlation weights has shown that the best predictive potential was observed for models where both fragments of local symmetry and the vector of the ideality of correlation were applied.

Funder

project sOFT-ERA

Publisher

MDPI AG

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3