Superior Rate Capability of High Mass Loading Supercapacitors Fabricated with Carbon Recovered from Methane Cracking

Author:

Baptista Joana12,Shacklock Jack23ORCID,Shaban Muhammad2,Alkayal Anas2,Lobato Killian1ORCID,Wijayantha Upul23

Affiliation:

1. Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal

2. Energy Research Laboratory (ERL), Department of Chemistry, Loughborough University, Loughborough LE11 3TU, UK

3. Centre for Renewable and Low Carbon Energy, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, UK

Abstract

High mass loading (ca. 30 mg/cm2) electrodes were prepared with carbon recovered from catalytic methane cracking (MC). As-fabricated supercapacitors displayed 74% of capacitance retention from 6 mA/cm2 to 60 mA/cm2 and a Ragone plot’s slope of −7 Wh/kW (compared to 42% and −31 Wh/kW, respectively, for high mass loading devices fabricated with commercial carbon). The high-rate capability of the MC-recovered carbon is attributed to the presence of carbon black and carbon nanotubes produced during the reaction, which likely increased the electronic and ionic conductivity within the electrode. These results suggest that the by-product of this hydrogen generation route might be a suitable active material for supercapacitors.

Funder

EPSRC

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

Inorganic Chemistry

Reference37 articles.

1. Working Group II (2022). IPCC WGII Sixth Assessment Report: Climate Change—Impacts, Adaptation and Vulnerability, IPCC.

2. Hydrogen as an Energy Vector;Abdin;Renew. Sustain. Energy Rev.,2020

3. A Framework for Assessing Economics of Blue Hydrogen Production from Steam Methane Reforming Using Carbon Capture Storage & Utilisation;Daiyan;Int. J. Hydrogen Energy,2021

4. Methane Pyrolysis for CO2-Free H2 Production: A Green Process to Overcome Renewable Energies Unsteadiness;Ruland;Chem. Ing. Tech.,2020

5. Methane Cracking as a Bridge Technology to the Hydrogen Economy;Weger;Int. J. Hydrogen Energy,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3