TmCN@C82: Monometallic Clusterfullerene Encapsulating a Tm3+ Ion

Author:

Zhang Huichao1,Xin Jinpeng1,Jin Huaimin1,Xiang Wenhao1,Chen Muqing1ORCID,Yao Yang-Rong1,Yang Shangfeng1

Affiliation:

1. Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China

Abstract

Metal cyanide clusterfullerenes (CYCFs) are formed via the encapsulation of a single metal atom and a cyanide unit inside fullerene cages, endowing them with excellent properties in various applications. In this work, we report the synthesis, isolation, and characterizations of the first cases of thulium (Tm)-based CYCFs with the popular C82 carbon cages. The structural elucidation of the two TmCN@C82 isomers was achieved via diverse analytical techniques, including mass spectrometry, Vis-NIR spectroscopy, single-crystal X-ray crystallography, and cyclic voltammetry. The crystallographic analyses unambiguously confirmed the molecular structures of the two TmCN@C82 isomers as TmCN@Cs(6)-C82 and TmCN@C2v(9)-C82. Both TmCN clusters adopt a well-established triangular configuration, with the Tm ion located on the symmetrical plane of the carbon cages. The electronic structures of both TmCN@C82 isomers adopt a Tm3+(CN)−@(C82)2− configuration, exhibiting characteristic spectral and electrochemical properties reminiscent of divalent endohedral metallofullerenes (EMFs). Intriguingly, unlike the divalent Tm2+ ion observed in the mono-metallofullerenes Tm@C2n, a higher oxidation state of Tm3+ is identified in the monometallic TmCN cluster due to bonding with the cyanide anion. This result provides valuable insight into the essential role of the non-metallic endo-units in governing the oxidation state of the metal ion and the electronic behaviors of EMFs.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Inorganic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3