Abstract
We review the solution-based synthesis routes to cerium oxide materials where one or more elements are included in place of a proportion of the cerium, i.e., substitution of cerium is performed. The focus is on the solvothermal method, where reagents are heated above the boiling point of the solvent to induce crystallisation directly from the solution. This yields unusual compositions with crystal morphology often on the nanoscale. Chemical elements from all parts of the periodic table are considered, from transition metals to main group elements and the rare earths, including isovalent and aliovalent cations, and surveyed using the literature published in the past ten years. We illustrate the versatility of this synthesis method to allow the formation of functional materials with applications in contemporary applications such as heterogeneous catalysis, electrodes for solid oxide fuel cells, photocatalysis, luminescence and biomedicine. We pick out emerging trends towards control of crystal habit by use of non-aqueous solvents and solution additives and identify challenges still remaining, including in detailed structural characterisation, the understanding of crystallisation mechanisms and the scale-up of synthesis.
Funder
Office of the Royal Society
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献