Abstract
Three catecholato copper(II) complexes, [Cu(catCl4)(L1′)], [Cu(catBr4)(L1′)], and [Cu(catCl4)(L1H)], supported by sterically hindered neutral and anionic N3 type ligands: tris(3,5-diisopropyl-1-pyrazolyl)methane (referred to as L1′) and hydrotris(3,5-diisopropyl-1-pyrazolyl)borate (referred to as L1−), are synthesized and characterized in detail. Their X-ray structures reveal that both [Cu(catCl4)(L1′)] and [Cu(catBr4)(L1′)] complexes have a five-coordinate square-pyramidal geometry and [Cu(catCl4)(L1H)] complex has a four-coordinate square-planar geometry. The L1H is unusual protonated ligand that controls its overall charge. For the three catecholato copper(II) complexes, the oxidation state of copper is divalent, and catechol exists in catecholate as two minus anion. This difference in coordination geometry affects their d-d and CT transitions energy and ESR parameters.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献