Cost Optimization of Graphene Oxide-Modified Ultra-High-Performance Concrete Based on Machine Learning Methods

Author:

Lv Hui1,Du Mingfeng2,Li Zijian2,Xiao Li1,Zhou Shuai2

Affiliation:

1. China Merchants Chongqing Communications Technology Research and Design Institute Co., Ltd., Chongqing 400067, China

2. College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China

Abstract

The use of carbon nanomaterials in ultra-high-performance concrete (UHPC) to improve its mechanical properties and durability is growing. Graphene oxide (GO) has emerged as one of the most promising nanomaterials in recent years for enhancing the properties of UHPC. The majority of research so far has been on the properties of UHPC enhanced with GO, but its high cost has limited its application in engineering. This work suggests a machine learning (ML)-based approach to optimize the mix ratio in order to lower the cost of graphene oxide-modified UHPC. To do this, an artificial neural network (ANN) is used to create the prediction model for the 28-day compressive strength and slump flow of UHPC. The performance of this model is then compared using nine different ML techniques. Subsequently, considering the restrictions of the UHPC component content, component proportion, and absolute volume, a genetic algorithm (GA) is adopted to lower the UHPC cost. The sensitivity analysis is carried out in the end. This study’s findings indicate that there is a decent degree of prediction accuracy since the difference between the ANN model’s predictions and the experimental outcomes is just 10%. The cost of UHPC optimized by GA is reduced to 776 $/m3, significantly lower than the average cost of UHPC.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3