First-Principles Calculations to Investigate Structural, Electronic, Optical and Magnetic Properties of Pyrochlore Oxides Eu2Tm2O7 (Tm = Hf, Sn, Zr) for Energy Applications

Author:

Abbas Zeesham1,Naz Adeela2,Hussain Sajjad1,Muhammad Shabbir3ORCID,Algarni H.4,Ali Ahsan5,Jung Jongwan1ORCID

Affiliation:

1. Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea

2. Department of Physics, The University of Lahore, Sargodha Campus, Sargodha 40100, Pakistan

3. Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia

4. Department of Physics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia

5. Department of Mechanical Engineering, Gachon University, Seongnam 13120, Republic of Korea

Abstract

Three newly designed pyrochlore oxides, Eu2Tm2O7 (Tm = Hf, Sn, Zr), are analyzed for their magnetic, optical and electronic properties using ab-initio calculations within the context of density functional theory (DFT). We can refer these compounds as direct bandgap materials because there is a very slight difference between the height of bands at the Γ- and M-point. It is observed that bandgap engineering can be performed by replacing Hf with Sn and Zr. It is observed from total density of states (TDOS) plots that shape and height of curves is not the same in spin up and spin down channels, showing significant magnetic moment in these compounds. It is evident from magnetic properties that a major portion of total magnetic moment (mtot) comes from Eu-atoms. In all compounds, the magnetic moment of O, Hf, Sn and Zr atoms is negative, whereas the magnetic moment of Eu-atoms is positive, showing their antiparallel arrangement. In both spin channels, significant absorption of the incoming photons is also shown by these compounds in the ultraviolet (UV) region. We can conclude on the basis of Rω that these compounds can be utilized in applications such as anti-reflecting coatings. These compounds are potential candidates for photovoltaic applications, such as solar cells, due to efficient absorption of incoming photons in visible and UV regions.

Publisher

MDPI AG

Subject

Inorganic Chemistry

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3