Enhancing the Tribo-Mechanical Performance of LDPE Nanocomposites Utilizing Low Loading Fraction Al2O3/SiC Hybrid Nanostructured Oxide Fillers

Author:

Alnaser Ibrahim A.12ORCID,Fouly Ahmed1,Aijaz Muhammad Omer2ORCID,Mohammed Jabair A.2ORCID,Elsheniti Mahmoud B.1ORCID,Ragab Sameh A.2,Abdo Hany S.2ORCID

Affiliation:

1. Mechanical Engineering Department, Collage of Engineering, King Saud University, Riyadh 11421, Saudi Arabia

2. Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research, King Saud University, Riyadh 11421, Saudi Arabia

Abstract

This research work highlights the tribomechanical investigations of using a low loading fraction of two ceramics combinations, Alumina (Al2O3) and Silicon Carbide (SiC) as reinforcement for Low-density Polyethylene (LDPE) matrix. The hybrid additives with different weight percentages (0.1 + 0.1, 0.25 + 0.25 and 0.5 + 0.5 wt%) were mixed with LDPE matrix and the degree of homogeneity was controlled using double-screw extruder prior to fabricating the composite samples via the injection molding machine. The nanoparticles fillers were characterized by field emission scanning electron microscope (FESEM), EDX and particle size analyzer to check its morphology, composition and size distribution. Thermogravimetric analyzer (TGA) and melting flow index (MFI) were performed for the fabricated nanocomposites samples. The mechanical properties of the nanocomposite were evaluated by performing tensile test, bending test and Shore-D hardness test, while the tribological performance was investigated using a ball on desk apparatus under different applied loads and sliding times. Moreover, in order to confirm the load-carrying capability of the composite, contact stresses was measured via finite element model using ANSYS software. The results show that the incorporation of low fraction hybrid ceramic nanoparticles can contributed positively in the tribological and mechanical properties. Based on the experimental results, the maximum improvement in the tensile strength was 5.38%, and 8.15% for hardness LDPE with 0.5 Al2O3 and 0.5 SiC, while the lowest coefficient of friction was noticed under normal load of 10 N, which was approximately 12.5% for the same composition. The novel approach of incorporating low fraction hybrid ceramic nanoparticles as reinforcement for LDPE matrix is investigated, highlighting their positive contributions to the tribological and mechanical properties of the resulting nanocomposites.

Funder

Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Inorganic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3