Improved Oxide Ion Conductivity of Hexagonal Perovskite-Related Oxides Ba3W1+xV1−xO8.5+x/2

Author:

Kikuchi Yugo1,Yasui Yuta1,Hester James R.2,Yashima Masatomo1

Affiliation:

1. Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 W4–17 O-okayama, Meguro-ku, Tokyo 152-8551, Japan

2. Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, Sydney, NSW 2232, Australia

Abstract

Hexagonal perovskite-related oxides such as Ba3WVO8.5 have attracted much attention due to their unique crystal structures and significant oxide ion conduction. However, the oxide ion conductivity of Ba3WVO8.5 is not very high. Herein, we report new hexagonal perovskite-related oxides Ba3W1+xV1−xO8.5+x/2 (x = −0.1, −0.05, 0.05, 0.1, 0.25, 0.4, 0.5, 0.6, and 0.75). The bulk conductivity of Ba3W1.6V0.4O8.8 was found to be 21 times higher than that of the mother material Ba3WVO8.5 at 500 °C. Maximum entropy method (MEM) neutron scattering length density (NSLD) analyses of neutron diffraction data at 800 °C experimentally visualized the oxide ion diffusion pathways through the octahedral O2 and tetrahedral O3 sites in intrinsically oxygen-deficient layers. By increasing the excess W content x in Ba3W1+xV1−xO8.5+x/2, the excess oxygen content x/2 increases, which leads to more oxygen atoms at the O2 and O3 oxygen sites, a higher minimum NSLD on the O2–O3 path, and a higher level of conductivity. Another reason for the increased conductivity of Ba3W1.6V0.4O8.8 is the lower activation energy for oxide ion conduction, which can be ascribed to the longer (W/V)–O2 and (W/V)–O3 distances due to the substitution of V atoms with large-sized W species. The present findings open new avenues in the science and technology of oxide ion conductors.

Funder

Grants-in-Aid for Scientific Research

Japan Science and Technology Agency

JSPS Core-to-Core Programs

JSPS Fellowship for Young Scientists

Institute for Solid State Physics, The University of Tokyo

Publisher

MDPI AG

Subject

Inorganic Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3