Effect of AST Atmosphere on Pt/C Electrocatalyst Degradation

Author:

Paperzh Kirill1ORCID,Moguchikh Elizaveta1,Pankov Ilya2ORCID,Belenov Sergey1ORCID,Alekseenko Anastasia1ORCID

Affiliation:

1. Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia

2. Research Institute of Physical Organic Chemistry, Southern Federal University, 194/2 Stachki St., Rostov-on-Don 344090, Russia

Abstract

The targeted development of novel stress testing protocols as well as the production of highly active and stable catalysts require abandoning a trial-and-error approach and transitioning to identifying the principal degradation mechanisms of electrocatalysts for PEMFCs under various conditions. Methodological aspects of research related to both qualitative and quantitative assessment of the materials’ robustness against degradation and its mechanisms become the key issues. In this study, accelerated stress testing has been conducted in Ar and O2 to identify the influence of the atmosphere on the degradation and durability mechanisms of the Pt/C catalysts. Initial and final parameters after the AST have been studied in detail by transmission electron microscopy and voltammetry using the rotating disk electrode technique. The Ostwald ripening (redeposition) of platinum particles has been established to be the predominant degradation mechanism during the testing in an O2 atmosphere, this being the agglomeration of nanoparticles during the testing in Ar. An ultra-small size and a narrow size distribution of platinum nanoparticles, as well as their uniform spatial distribution over the surface of the carbon support, have been shown to allow both ORR activity to be increased and durability to be enhanced.

Funder

Southern Federal University

Publisher

MDPI AG

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3