Pt Nanoparticles Supported on Ultrathin Ni(OH)2 Nanosheets for Highly Efficient Reduction of 4-Nitrophenol

Author:

Cui Jia-Lin1,Liu Zhong-Liang1ORCID,Li Hui-Hui1,Li Chun-Zhong12

Affiliation:

1. Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

2. Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China

Abstract

The synthesis of highly efficient heterogeneous catalysts with uniformly dispersed noble metal particles and a suitable size is crucial for various industrial applications. However, the high cost and rarity of noble metals limit their economic efficiency, making it essential to improve the catalytic performance with lower noble metal loading. Herein, a two-step method was developed for the synthesis of uniformly dispersed ~3 nm Pt nanoparticles (NPs), strongly anchored on Ni(OH)2 nanosheets (NSs), which was proven by adequate structural characterizations. XPS analysis demonstrated that Ni(OH)2 NSs with abundant oxygen vacancies provided sufficient anchor sites for Pt NPs and prevented their agglomeration. The catalytic performance of Ptn/Ni(OH)2 (n (represents the addition amount of Pt precursors during the synthesis, μmol) = 5, 10, 15, and 20) NSs with controllable Pt loading were evaluated via the reduction of 4-nitrophenol to 4-aminophenol as a model reaction. The Pt10/Ni(OH)2 NSs exhibited the best activity and stability, with a reaction rate constant of 0.02358 s−1 and negligible deterioration in ten reaction cycles. This novel synthetic method shows potentials for the synthesis of highly efficient noble-metal-supported catalysts for heterogeneous catalysis.

Funder

National Natural Science Foundation of China

Shanghai Municipal Science and Technology Major Project

Shanghai Rising-Star Program

Shanghai Sailing Program

Publisher

MDPI AG

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3