Effect of Reduced Atmosphere Sintering on Blocking Grain Boundaries in Rare-Earth Doped Ceria

Author:

Sulekar Soumitra,Mehr Mehrad,Kim Ji Hyun,Nino Juan Claudio

Abstract

Rare-earth doped ceria materials are amongst the top choices for use in electrolytes and composite electrodes in intermediate temperature solid oxide fuel cells. Trivalent acceptor dopants such as gadolinium, which mediate the ionic conductivity in ceria by creating oxygen vacancies, have a tendency to segregate at grain boundaries and triple points. This leads to formation of ionically resistive blocking grain boundaries and necessitates high operating temperatures to overcome this barrier. In an effort to improve the grain boundary conductivity, we studied the effect of a modified sintering cycle, where 10 mol% gadolinia doped ceria was sintered under a reducing atmosphere and subsequently reoxidized. A detailed analysis of the complex impedance, conductivity, and activation energy values was performed. The analysis shows that for samples processed thus, the ionic conductivity improves when compared with conventionally processed samples sintered in air. Equivalent circuit fitting shows that this improvement in conductivity is mainly due to a drop in the grain boundary resistance. Based on comparison of activation energy values for the conventionally processed vs. reduced-reoxidized samples, this drop can be attributed to a diminished blocking effect of defect-associates at the grain boundaries.

Publisher

MDPI AG

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3