New Dual Inhibitors of SARS-CoV-2 Based on Metal Complexes with Schiff-Base 4-Chloro-3-Methyl Phenyl Hydrazine: Synthesis, DFT, Antibacterial Properties and Molecular Docking Studies

Author:

Al-Janabi Ahmed S. M.1ORCID,Elzupir Amin O.2ORCID,Abou-Krisha Mortaga M.34ORCID,Yousef Tarek A.35ORCID

Affiliation:

1. Department of Chemistry, College of Science, Tikrit University, Tikrit 34001, Iraq

2. Deanship of Scientific Research, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia

3. Chemistry Department, Science College, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia

4. Department of Chemistry, South Valley University, Qena 83523, Egypt

5. Toxic and Narcotic drug, Forensic Medicine Department, Mansoura Laboratory, Medicolegal Organization, Ministry of Justice, P.O. Box 12432, Cairo 11435, Egypt

Abstract

This paper explores a dual inhibition of main protease (Mpro) and nonstructural protein 10/nonstructural protein 16 (NSP16) methyltransferase complex as the key targets for COVID-19 therapy. These are based on the new Schiff-base ligand that was obtained from the condensation of (4-chloro-3-methyl phenyl) hydrazine with 2-pyridine-carboxaldehyde and its novel Schiff-base metal complexes. These include Ni(II), Pd(II), Pt(II), Zn(II), and Hg(II). The newly synthesized compounds have been characterized using FT-IR, 1H NMR, 13C NMR, and elemental analysis. The results suggested that the Schiff-base ligand is coordinated as a bidentate ligand through the nitrogen atoms of the azomethine group and pyridyl ring. In addition, the biological activity of the prepared complexes was examined against Pseudomonas aeruginosa and Staphylococcus aureus, and the results showed that the Zn(II) complex has the highest activity compared with other compounds. The active sites were found by looking at the molecular electrostatic potential (MEP) maps of the above ligands and complexes. The activity of the compound and its Ni(II) and Zn(II) complexes against Mpro and NSP10/ NSP16 was investigated using a molecular docking approach. They showed excellent binding energies ranging from −5.9 to −7.2 kcal/mol and −5.8 to −7.2 for Mpro and NSP16, respectively. All conformers of the metal complexes were docked with the active site of the NSP16 receptor, showing a binding affinity of 100%. According to our knowledge, this was the first report of these metal complexes as dual inhibitors for Mpro and NSP16 of SARS-CoV-2.

Funder

Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University (IMSIU), Saudi Arabia

Publisher

MDPI AG

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3