Sol-Gel Synthesis and Characterization of Novel Y3−xMxAl5−yVyO12 (M—Na, K) Garnet-Type Compounds

Author:

Vistorskaja Diana1,Laurikenas Andrius1,Montejo de Luna Alejandro12ORCID,Zarkov Aleksej1ORCID,Pazylbek Sapargali3ORCID,Kareiva Aivaras1ORCID

Affiliation:

1. Department of Inorganic Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania

2. Faculty of Science, Universidad de Cordoba, Ctra. Madrid-Cádiz Km. 396. 14071 Cordoba, Spain

3. Department of Physics, South Kazakhstan State Pedagogical University, 13 A Baitursynov St, Shymkent 160005, Kazakhstan

Abstract

In this study, for the first time to the best of our knowledge, the new garnets Y3−xNaxAl5O12, Y3−xKxAl5O12, Y3Al5−yVyO12, and Y3−xNaxAl5−yVyO12 with various stoichiometric compositions were successfully synthesized by the aqueous sol-gel method. All obtained samples were characterized by X-ray diffraction (XRD) analysis, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). It was determined from the XRD results that the formation of monophasic Y3−xNaxAl5O12, Y3−xKxAl5O12, Y3Al5−yVyO12, and Y3−xNaxAl5−yVyO12 garnets is possible only at limited doping levels. The highest substitutional level of doped metal was observed for the YAG doped with sodium (x = 1), and the lowest substitutional level was observed for the YAG doped with vanadium (y = 0.05). Furthermore, the obtained FTIR spectroscopy results were in good agreement with the XRD analysis data, i.e., they confirmed that the YAG is the main crystalline phase in the end products. The SEM was used to study the morphology of the garnets, and the results obtained showed that all synthesized samples were composed of nano-sized agglomerated crystallites.

Publisher

MDPI AG

Subject

Inorganic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3