Abstract
Conductive electrochemically active metallopolymers are outstanding materials for energy storage and conversion, electrocatalysis, electroanalysis, and other applications. The hybrid inorganic–organic nature of these materials ensures their rich chemistry and offers wide opportunities for fine-tuning their functional properties. The electrochemical modulation of the nanomechanical properties of metallopolymers is rarely investigated, and the correlations between the structure, stiffness, and capacitive properties of these materials have not yet been reported. We use electrochemical atomic force microscopy (EC-AFM) to perform in-situ quantitative nanomechanical measurements of two Schiff base metallopolymers, poly[NiSalphen] and its derivative that contains two methoxy substituents in the bridging phenylene diimine unit poly[NiSalphen(CH3O)2], during their polarization in the electrolyte solution to the undoped and fully doped states. We also get insight into the electrochemical p-doping of these polymers using electrochemical quartz crystal microgravimetry (EQCM) coupled with cyclic voltammetry (CV). Combined findings for the structurally similar polymers with different interchain interactions led us to propose a correlation between Young’s modulus of the material, its maximum doping level, and ion and solvent fluxes in the polymer films upon electrochemical oxidation.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献