Acoplanarity, Aromaticity, Chirality, and Helical Twisting Power of Chlorin e6 13(N)-Methylamide-15,17-dimethyl Ester Complexes: Effect of a Metal

Author:

Burmistrov Vladimir,Aleksandriiskii Viktor,Novikov Igor,Batrakova Alena,Belykh Dmitry,Startseva OlgaORCID,Koifman Oskar I.

Abstract

The experimental and theoretical study of the influence of metal complexing on geometry, aromaticity, chirality, and the ability to twist the nematic phase by complexes based on modified natural chlorin e6 was carried out. The geometry optimization of the chlorin e6 13(N)-methylamide-15,17-dimethyl ester (MADMECl) and its Zn, Cu, and Ni complexes by DFT (CAM-B3LYP/6–31 G(d,p) functional) method was performed. Based on these calculations, the acoplanarity degree of the macrocyclic ligand and the distortion energy of its dianion were estimated, which allowed the arrangement of the MADMECl complexes in the series Ni > Cu > Zn. Aromaticity was evaluated using the NICS criterion (nuclear independent chemical shift). An increase in the degree of aromaticity of the macrocycle upon complex formation was established. At the same time, the aromaticity of the inner conjugation contour corresponds to the same series as the acoplanarity, while the outer π-delocalization is characterized by the reverse sequence. An experimental evaluation of the electron circular dichroism of the Soret and the Q-bands, as well as the g-factor of dissymmetry, was carried out. The growth of these parameters with an increase in the degree of acoplanarity and aromaticity of the internal conjugation contour was determined. The induction of helical phases in mixtures of nematic liquid crystals (LCs) based on cyanobiphenyls and MADMECl macrocyclic metal complexes was studied by polarization microscopy, and the clearance temperatures and helix pitch of the mesophases were measured. A strong effect of the metal on the phase transition temperature and helical twisting power was established.

Funder

Ministry of Science and Higher Education of Russia

Publisher

MDPI AG

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3