Abstract
Bimetallic structures of the general type [M2(µ-S)2] are omnipresent in nature, for biological function [M2(µ-S)2] sites interconvert between electronically distinct, but isostructural, forms. Different from structure-function relationships, the current understanding of the mechanism of formation and persistence of [M2(µ-S)2] sites is poorly developed. This work reports on bimetallic model compounds of nickel that interconvert between functional structures [Ni2(µ-S)2]+/2+ and isomeric congeners [2{κ-S–Ni}]2+/+, S = Aryl-S−, in which the nickel ions are geometrically independent. Interconversion of the two sets of structures was studied quantitatively by UV–VIS absorption spectroscopy and cyclic voltammetry. Assembly of the [Ni2(µ-S)2]+ core from [2{κ-S–Ni}]+ is thermodynamically and kinetically highly preferred over the disassembly of [Ni2(µ-S)2]2+ into [2{κ-S–Ni}]2+. Labile Ni-η2/3-bonding to aromatic π-systems of the primary thiophenol ligand is critical for modeling (dis)assembly processes. A phosphine coligand mimics the role of anionic donors present in natural sites that saturate metal coordination. Three parameters have been identified as critical for structure formation and persistence. These are, first, the stereoelectronic properties of the metals ions, second, the steric demand of the coligand, and, third, the properties of the dative bond between nickel and coligand. The energies of transition states connecting functional and precursor forms have been found to depend on these parameters.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献