Abstract
Graphene is one of the most well-known two-dimensional (2D) materials that has attracted significant interest due to its unique electrical and optical properties. Being a van der Waals substrate, the fabrication of few-layered graphene by stacking a pre-defined number of graphene monolayers is essential in the field. The thickness can influence the interface interaction and therefore tune the surface electronic properties. In the study, we demonstrate a bottom-up synthesis of pre-defined few-layer graphene on SiC substrate using the thermal decomposition method and carefully characterize its thickness by the non-damageable synchrotron-radiation-based X-ray photo-electron spectroscopy (SR-XPS). By varying the photon energy, we acquire different probe depths, resulting in the different intensity ratios of graphene to SiC substrate, which is then used to estimate the thickness of the few-layer graphene. Our calculation demonstrates that the thermal decomposition method in the study can repeatedly fabricate graphene samples with expected thickness. We further compare the obtained few-layer graphene to the single-layer graphene and HOPG using the scanning tunneling microscopy (STM) technique. Our work provides accurate methods for fabricating and characterizing pre-defined few-layer graphene, providing essential knowledge in future graphene-based thin film electronics.
Funder
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献