Quaternization of Porous Cellulose Beads and Their Use for Removal of Humic Acid from Aqueous Medium

Author:

Uchiyama Kana,Asamoto Hiromichi,Minamisawa Hiroaki,Yamada KazunoriORCID

Abstract

Porous cellulose beads were quaternized with glycidyltrimethylammonium chloride (GTMAC) to explore a potential use of them as an adsorbent for removal of humic acid (HA) from aqueous medium. The introduction of quaternary ammonium groups was confirmed by FT-IR and XPS analysis. The content of introduced quaternary ammonium groups increased with an increase in the GTMAC concentration. The adsorption capacity increased with a decrease in the initial pH value and attained the maximum value at pH 3 and increased with an increase in the content of quaternary ammonium groups. The removal % increased with the dose of quaternized cellulose beads at both pH 3.0 and 6.0. The adsorption process obeyed the pseudo-second order kinetic model and exhibited a better fit to the Langmuir isotherm model, suggesting that the adsorption of HA is accomplished through the electrostatic interaction between a quaternary ammonium group introduced and a dissociated carboxy group of a HA molecule. The maximum adsorption capacity obtained in this study is comparable to or higher than those published by other articles. HA loaded was completely released to NaOH solutions at higher than 100 mM to regenerate the quaternized cellulose beads. The above-mentioned results clearly show that the quaternized cellulose beads prepared in this study can be used as a regenerable adsorbent with high capacity for removal of HA from aqueous medium.

Publisher

MDPI AG

Subject

General Medicine

Reference56 articles.

1. Structure and properties of humic and fulvic acids. 1. Properties and reactivity of humic acids and fulvic acids;J. Polym. Mater.,2000

2. Removal of humic acid from aqueous solution by cetylpyridinium bromide modified zeolite;Zhan;J. Environ. Sci.,2010

3. Amine-modified polyacrylamide-bentonite composite for the adsorption of humic acid in aqueous solutions;Anirudhan;Colloids Surf. A Physicochem. Eng. Asp.,2008

4. Humic acids: Structural properties and multiple functionalities for novel technological developments;Motta;Mater. Sci. Eng. C.,2016

5. A toxicological evaluation of a fulvic and humic acids preparation;Murbach;Toxicol. Rep.,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3