Grafting of Polyethyleneimines on Porous Silica Beads and Their Use for Adsorptive Removal of Cr(VI) from Aqueous Medium

Author:

Taki Ayane1,Morioka Kouta1,Noguchi Keiko1,Asamoto Hiromichi2,Minamisawa Hiroaki2,Yamada Kazunori3ORCID

Affiliation:

1. Major of Applied Molecular Chemistry, Graduate School of Industrial Technology, Nihon University, 1-2-1 Izumi-cho, Narashino 275-8575, Chiba, Japan

2. Department of Basic Science, College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino 275-8576, Chiba, Japan

3. Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, 1-2-1 Izumi-cho, Narashino 275-8575, Chiba, Japan

Abstract

Porous silica-based adsorbents for hexavalent chromium (Cr(VI)) ion removal were prepared by the combined use of functionalization with (3-glycidyloxypropyl)trimethoxysilane and the grafting of branched and linear polyethyleneimine (BPEI and LPEI). LPEI was prepared from polyethyloxazolin by hydrolysis with HCl. The preparation of LPEI was identified by NMR measurements and the grafting of BPEI and LPEI on the silica beads was confirmed by an XPS analysis. The Cr(VI) ion adsorption of the obtained BPEI-grafted silica beads (BPEI–silica beads) was investigated as a function of the pH value, the content of amino groups, the temperature, the Cr(VI) ion concentration, and the molecular mass of the grafted BPEI chains. The Cr(VI) ion adsorption at pH 3.0 increased with an increase in the content of amino groups, and the maximum adsorption capacity of 1.06 mmol/g was obtained when the content of amino groups was at 2.17 mmol/g. This value corresponds to 589 mg/g−1.8KPEI, and the adsorption ratio of about 0.5 is a noteworthy result. The data fit to the pseudo-second-order kinetic model, and the suitability of this fitting was supported by the results that the adsorption capacity and initial rate of adsorption increased with the temperature. In addition, the equilibrium data followed the Langmuir isotherm model. These results clearly demonstrate that the Cr(VI) adsorption occurred chemically, or through the electrostatic interaction of protonated amino groups on the grafted BPEI chains with hydrochromate (HCrO4−) ions. A higher adsorption capacity was obtained for the silica beads grafted with shorter BPEI chains, and the adsorption capacity of BPEI–silica beads is a little higher than that of linear PEI-grafted silica beads, suggesting that the Cr(VI) ion adsorption is affected by the chain isomerism of PEI (linear and branched) as well as the molecular mass of the grafted PEI chains, in addition to the content of amino groups. The experimental and analytical results derived from this study emphasize that the BPEI–silica beads can be used as an adsorbent for the removal of Cr(VI) ions from an aqueous medium.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3