Thermodynamic Analysis of ArxXe1-x Solid Solutions Based on Kirkwood–Buff Theory

Author:

Miyaji Masafumi,Simon Jean-Marc,Krüger PeterORCID

Abstract

Kirkwood–Buff Integral (KBI) theory is an important method for the analysis of the structural and thermodynamic properties of liquid solutions. For solids, the calculation of KBIs has become possible only recently through the finite-volume generalisation of KBI theory, but it has so far only been applied to monoatomic crystals. Here, we show that KBI theory can be applied to solid mixtures and compute the KBIs of a ArxXe1−x solid solution, for 0<x<0.1 and temperature T=84−86 K, from pair distribution functions obtained by Monte Carlo simulation. From the KBIs, the isothermal compressibility, partial molar volumes, and thermodynamic factors are calculated and found to be in good agreement with alternative theoretical methods. The analysis of the KBIs and the partial molar volumes give insight into the structure of the mixture. The KBI of Ar pairs is much larger than that of Xe pairs, which indicates the tendency of Ar impurities to accumulate. The evolution of the partial molar volumes with increasing Ar molar fraction x shows a transition at x≈0.06, which reflects the formation of Ar clusters, precursors of the Ar-rich liquid phase. The calculated thermodynamic factors show that the solid(Xe) phase becomes unstable at x≈0.1, indicating the start of the solid (Xe)–liquid (Ar) equilibrium. The chemical potentials of Ar and Xe are obtained from the thermodynamic factor by integration over lnx, and by fitting the data to the Margules equations, the activity coefficients can be estimated over the whole composition range. The present findings extend the domain of applicability of the KBI solution theory from liquids to solids.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3