Potentiometric Biosensor Based on Artificial Antibodies for an Alzheimer Biomarker Detection

Author:

Ribeiro Sónia Claúdia,Fernandes RúbenORCID,Moreira Felismina T. C.ORCID,Sales Maria Goreti FerreiraORCID

Abstract

This paper presents a potentiometric biosensor for the detection of amyloid β-42 (Aβ-42) in point-of-care analysis. This approach is based on the molecular imprint polymer (MIP) technique, which uses covalently immobilised Aβ-42 to create specific detection cavities on the surface of single-walled carbon nanotubes (SWCNTs). The biosensor was prepared by binding Aβ-42 to the SWCNT surface and then imprinting it by adding acrylamide (monomer), N,N′-methylene-bis-acrylamide (crosslinker) and ammonium persulphate (initiator). The target peptide was removed from the polymer matrix by the proteolytic action of an enzyme (proteinase K). The presence of imprinting sites was confirmed by comparing a MIP-modified surface with a negative control (NIP) consisting of a similar material where the target molecule had been removed from the process. The ability of the sensing material to rebind Aβ-42 was demonstrated by incorporating the MIP material as an electroactive compound in a PVC/plasticiser mixture applied to a solid conductive support of graphite. All steps of the synthesis of the imprinted materials were followed by Raman spectroscopy and Fourier transform infrared spectroscopy (FTIR). The analytical performance was evaluated by potentiometric transduction, and the MIP material showed cationic slopes of 75 mV-decade−1 in buffer pH 8.0 and a detection limit of 0.72 μg/mL. Overall, potentiometric transduction confirmed that the sensor can discriminate Aβ-42 in the presence of other biomolecules in the same solution.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3