Offloading of Atomic Tasks in Satellite Networks: A Fast Adaptive Resource Collaboration Method

Author:

Li Yanbing,Zhao Wei,Fan HuilongORCID

Abstract

With the explosive growth of multimedia services and the continuous emergence of new space tasks, the spatial task scheduling timeliness problem is of great concern. The high computational cost of existing task scheduling methods is not suitable for the time-varying scenarios of space-based networks. This paper proposes a scheduling optimization method containing an atomic task offloading model based on maximum flow theory and a dynamic caching model. Firstly, the model calculates the task offloading upper limit in the satellite network based on the maximum flow theory to achieve the maximum volume of offloaded tasks to improve the resource utilization of idle satellites. Then, we design onboard task offloading and buffer optimization algorithms to reduce the request load of single-satellite atomic tasks. The method improves the overall computational performance and timeliness of the satellite network and reduces the waiting time of atomic tasks competing for resources. Finally, we analyze the time complexity of the proposed method and construct a simulation experiment scenario. The performance comparison results with various baseline models show that the proposed method has certain time complexity and task execution timeliness advantages.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fine-Grained Task Scheduling Combining DDPG and Path Selection in LEO Satellite Networks;2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom);2023-11-01

2. Autonomous Task Planning Method for Multi-Satellite System Based on a Hybrid Genetic Algorithm;Aerospace;2023-01-10

3. Network Simulators for Satellite-Terrestrial Integrated Networks: A Survey;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3