Abstract
Current mouthguard test methods require improvement, as the impact energies during traditional testing do not reflect the higher energy that can be observed in actual use during sport. A new data set of ball speeds experienced during the sport of field hockey was obtained. These ball speeds have then been used to estimate impact energies. This information was used to subsequently develop a new test method consisting of a high-speed camera and drop tower. Observations show an increase in energy experienced by the mouthguard for higher-impact energies. The work carried out showed that current testing methods for sports mouthguards use lower-energy impacts than experienced during the sport of field hockey. The new method that is proposed allows for a more realistic representation of real-world impacts.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献