The Virtual Reconstruction of the Aesculapius and Hygeia Statues from the Sanctuary of Isis in Lilybaeum: Methods and Tools for Ancient Sculptures’ Enhancement

Author:

Fazio LeonardaORCID,Lo Brutto MauroORCID,Gonizzi Barsanti SaraORCID,Malatesta Saverio GiulioORCID

Abstract

Thanks to recent technological developments in 3D surveys, computer graphics and virtual reality, new scenarios have been opened for the documentation and enhancement of ancient sculptures. When not totally preserved, sculptures can be digitally reproduced, modified and visualized to simulate their physical or virtual reconstruction in a non-invasive way for specialists or for dissemination aims. The virtual sculptural reconstruction process starts usually from the 3D survey of real fragments, and then continues by integrating missing parts with 3D modelling techniques by means of source evaluation. Along with primary data sources (reality-based model), secondary data sources (photos, drawings and 3D models of similar sculptures) can be directly used in the reconstruction process. This approach has a double advantage of making the reconstruction activities easier and less arbitrary, contributing to a decrease in the degree of uncertainty for the sculptural reconstruction work, also thanks to many iconographic comparisons to ancient copies. Moreover, virtual reconstruction can be easily visualized alongside a scalable rendering system using open-source Web3D apps and platforms, accessing information, 3D models and descriptions in order to enhance the experience of artworks. Inspecting theoretical and technical approaches, this work aims at establishing how primary and secondary data sources can be effectively used in sculptural reconstruction workflows, and how 3D outputs can be applied to implement digital sculptural heritage exploitation for museums and cultural institutions. The statues of Aesculapius and Hygeia from the sanctuary of Isis in Lilybaeum (Marsala, Italy) were chosen as a case study.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3