Abstract
In this study, a novel feature learning method for synthetic aperture radar (SAR) image automatic target recognition is presented. It is based on spatial pyramid matching (SPM), which represents an image by concatenating the pooling feature vectors that are obtained from different resolution sub-regions. This method exploits the dependability of obtaining the weighted pooling features generated from SPM sub-regions. The dependability is determined by the residuals obtained from sparse representation. This method aims at enhancing the weights of the pooling features generated in the sub-regions located in the target and suppressing the weights of the background. The feature representation for SAR image target recognition is discriminative and robust to speckle noise and background clutter. Experiments performed on the Moving and Stationary Target Acquisition and Recognition public dataset prove the advantageous performance of the presented algorithm over several state-of-the-art methods.
Funder
the National Natural Science Foundation of China
the National Science Foundation of Tianjin Province of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献