Abstract
C-Ring oxidized estrone acetate derivatives as antiproliferative agents were prepared and tested against five cancer cell lines by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Flow cytometry assays to evaluate cell viability and modifications in cell cycle phases and molecular docking research against estrogen receptor α, steroid sulfatase, and 17β-hydroxysteroid dehydrogenase type 1 were performed. 9α-Hydroxy,11β-nitrooxyestrone acetate was the most cytotoxic molecule against hormone-dependent cancer cells. Furthermore, flow cytometry experiments revealed that this 9α-hydroxy,11β-nitrooxy derivative markedly reduced HepaRG cells viability (~92%) after 24 h of treatment. However, 9α-hydroxyestrone acetate led to selective inhibition of HepaRG cells growth, inducing a G0/G1 cycle arrest, and did not originate a proliferation effect on T47-D cancer cells. Docking studies estimated a generally lower affinity of these compounds to estrogen receptor α than predicted for estrone and 17β-estradiol. Therefore, this structural modification can be of interest to develop new anticancer estrane derivatives devoid of estrogenic action.
Funder
COMPETE 2020
Foundation for Science and Technology
FEDER
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science